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Finite-Difference Analysis of Rectangular
Dielectric Waveguide Structures

KARLHEINZ BIERWIRTH, NORBERT SCHULZ, AND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract — A class of dielectric wavegnide structures using a rectangular

dielectric strip in conjunction with one or more layered dielectrics is

analyzed with a finite-difference method formulated directly in terms of

the wave equation for the transverse components of the magnetic field.

‘II& leads to an eigenvahre problem where the nonphysical, spurions

modes do not appear. Moreover, the analysis inclndes hybrid-mode conver-

sion effects, such as complex waves, at frequencies where the modes are

not yet completely bonnd to the core of the highest dielectric constant, as

well as at frequencies below cutoff. Dispersion characteristic examples are

calculated for structures snitable for millimeter-wave and optical integrated

circuits, such as dielectric image lines, shielded dielectric wavegnides,

insulated image guides, ridge guides, and inverted strip, channel, strip-slab,

and indiffused inverted ridge guides. The numerical examples are verified

by results available from other methods.

I. INTRODUCTION

D IELECTRIC WAVEGUIDE structures of the class

shown in Fig. l(a) have found increasing interest for

integrated circuit applications in the millimeter-wave and

optical frequency range [1]–[21]. As this class includes a

wide variety of specially shaped dielectric waveguides (Fig.

l(b)–(k)), in the design of integrated circuits utilizing such

structures, it is important to find a reliable computer

analysis which is sufficiently general and flexible to allow

dominant- and higher order mode solutions of all desired

cases and which avoids the troublesome problem of non-

physical or “ spurious” modes [28] -[33], [38].

Various methods of analyzing one or several of the

structures in Fig. l(b)–(k) have been the subject of many

papers, e.g. [1]–[33], including, in particular, different kinds

of mode-matching techniques [2]-[13], [16], [17], [22]–[27]

and the finite-element method [15], [28]–[32]. Although the

finite-difference method is a common technique for the

solution of boundary value problems [33]–[37], it has only

been recently [33] that this method has been applied to one

of the structures of Fig. 1, the dielectric waveguide (Fig.

l(d)). The variational formulation in [33], however, brings

this method close to a finite-element technique [38], and
since an E= – H= formulation is utilized, spurious modes

occur [33].

Following [37], [38] in judging the appropriateness of a

method to solve a dielectric waveguide problem with a
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Fig, 1, Layered dielectric waveguide structures for integrated circuits in
the millimeter-wave and optical frequency range. (a) General structure,
(b) Nonradiative dielectric waveguide (cf. [20]). (c) Dielectric image line
([1]). (d) Dielectric waveguide ([22]). (e) Strip dielectric guide ( Cz< c1)
or insulated image guide (C2 > c1) ([3]). (f) Ridge guide ([16]).
(g) Inverted strip wide ([13]). (h) Channel or embedded strip guide ([2]),
(i) Strip-slab guide ([3]). (k) Indiffused inverted ridge guide ([17]),

particular cross-sectional shape, such as that shown in Fig.

l(a) one has to weigh the following criteria: flexibility to

deal with a large number of regions and with the hybrid-

mode nature of all interesting modes; accuracy and com-

putational efficiency; and the possibility of modifications

to eliminate unwanted nonphysical modes. Among the

candidates mentioned above, the finite-difference method

is considered to meet all these criteria very well.

This paper presents a simple, flexible, versatile finite-dif-

ference solution for analyzing the inhomogeneous wave-

guide structures of Fig. 1 which is free from the problem of

spurious modes. Instead of the vector potential formula-

tion of [39], which is solved by searching for the

dominant-mode propagation factor [39], a simpler direct

wave equation solution formulated in terms of the trans-

verse magnetic field components, HX and HP, is utilized

which leads advantageously to a conventional eigenvalue

problem [40]. A graded mesh permits the investigation of

structures with realistic dimensions by making the mesh
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finer in regions of particular interest; if necessary, the

enclosing box is sufficiently large so that it does not

perturb the modes perceptibly. Related coupled structures

are implicated by suitable electric or magnetic wall sym-

metry. Moreover, the finite-difference analysis given allows

the investigation of hybrid-mode conversion effects, such

as complex waves [26], [43]–[45], at frequencies where the

modes are not yet completely bound to the core of the

highest permittivity, as well as at frequencies below cutoff.

Numerical results compared with available data from other

methods verify the theory given.

II. THEORY

A finite cross section is defined by enclosing the guide in

a rectangular box (Fig. l(a)) where the side walls may be

either electric or magnetic walls in order to include cou-

pled structures. An exponential decay factor maybe intro-

duced to approximate the infinite exterior region for re-

lated “open” structures [28]. Since the finite-difference

analysis given includes mode investigations below cutoff,

which makes the decay factor modeling difficult to be

applied, it is preferred for these cases to make the box

large enough [33], [36], [37] so that the influence on the

modes may be neglected. A graded mesh permits the

optimum use of the available computer capabilities for

these cases as well.

The wave equation describing the propagation in a

waveguide with inhomogeneous cross section can be ex-

pressed in terms of two field components, which are usu-

ally taken to be the longitudinal components E= and Hz
[36], [37]. The formulation in terms of the transverse

components Hx and Hy is preferred, however, since it

circumvents the spurious-mode problem.

The Hehnholtz equations in the homogeneous subre-

gions v =1,2,3,4 (Fig. 2(a)) are

where [42]

V:Hjv) + k;H;”) = O

82 a=
v:=— —

ax2 + ay2
(1)

{
y= W

a

and a z dependence of exp ( – yz ) of the wave propagation

is understood. At the electric or magnetic walls, the

boundary conditions dH/i3n = O or H = O, respectively,

have to be satisfied (ii= tmit vector normal to the walls).

63 HE
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s
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Fig. 2. Illustration of the finite-difference method treatment. (a) Graded
mesh of the five-point representation. (b) Typical original structure of
the matrix (A) in (6) and (7). (c) Rearranged structure of(A).

A graded mesh, of side lengths w, n, e,s (Fig. 2(a)), is
presumed drawn over the guide cross section. In the gen-

eral case, there are four subregions with four different

dielectric constants. Equations (1) may then be written in

its five-point finite-difference form [34], which in the case

of inhomogeneous cross sections leads to four coupled
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equations for each component IIx or HY, respectively,

()

8H
O=–lHW– YHM+ ‘+5 Hp–~wnk~Hp+w— –n:

w n nw ay ~ 1

()

dH
O=–lHw–y H~+ ‘+? Hp–;wsk;Hp–w~

w s Sw
2

–s= ~

()
0=–<H~–5H~+ ‘+5 Hp–~esk~Hp–e~ +s:

e s se ay ~ 3

(1
O=–EH~–~HN+ ‘+z Hp–~enk~Hp+e~ +n~

e n en ay ~
(2)

4

where H denotes H, or HP, respectively, and the designa- and for Hy: Ezl = Ezd, E,2 = EZ3, H,l = HZ4, HZ2= H,3,
tions W, N, E, S, etc., are elucidated in Fig. 2(a). H,l = Hzz, i.e.

Consideration is next given to the boundary conditions

for Hx: E,l = Ezz, EZ3= Ezd, H,l = HZ2, HZ3= HZ4, H;l = 1 aHx 1 aHx 1 aHy 1 aHy
H,d, i.e. cl ay ~

—— =0
‘~ay ~+& ax ~– ~4 ax ~

1 aHx 1 aHx 1 aH, 1 aH,
— —— — +—- –—— 1 aHx 1 aHx

‘Gay z
=0 1 aHv 1 aH,

cl ay ~ Cl ax ~ 62 ax ~ — — =0
(3 ay y–< ay *–<Z ~+~ ax ~

1 aH% 1 aHx 1 aH, 1 aH,
—— — =0
63 ay 3–<zj- 4–<Z ~+< ax b

aHy aHx aHy aHy
+—— . —— =0

ax ~ ax ~ ay ~ ay ~

aHy aHx aHy aH, aHx aHx aHy aH,

ax ~– ax z+ ay ~–
— =0 ——
ay ~

+— — =0
ax ~ ax z ay ~– ay z

aHx aHx aHy aHy
aHx aHx aHy aHy — +— –—

ax z– ax ~ ay ~ ay ~
= O. (3b)

_— +— — =0
ax ~ ax ~ ay ~– ay ~

These conditions are satisfactory to properly continue the

aHx aHy aH, aHy wave solution from one subregion to the next such that the
— —— —
ax ~ ax b

= o (Sa) whole coupled solution governed by Maxwell’s equations
+ ay ~– ay ~

is obtained. Utilizing these conditions, the finite-difference

equations (2) result in

2 2 2

(

WE2 ec3

)

2

(

Wcl ecd
Hxw+ Hx. + + HXN + +

w(w+e) )
Hxs

e(w+e) n(w+e) s61+n62 nt3+std s(w+e) scl+izcz n63+s64

(4)
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and

(5)

Equations (4) and (5) give HXP and Hyp, the magnetic

field components at the discrete node point P, in terms of

the immediately adjacent node points W, E, ZV,S (Fig.

2(a)). These equations are evaluated at each node point P
with appropriate modification to include the related

boundary conditions (electric or magnetic wall) of the

structure to be investigated (Fig. l(a)). In this way, a set of

linear homogeneous equations is derived of the form

where (H) and (E) denote the submatrices given by the

coefficients in (4) and (5) related to HX or Hy, respectively,

whereas (HE ) and (EH) denote the coupled terms related

to HX * Hy &d H;+ HX, respectively.-

genvalue equation

(( A)- A(U)) (X)=O

where

A=–y2

The resulting ei-

(7)

(X)=( HX., HX,,O..; HY1, HY2,. C.)T

((H) (HE)

‘A) = (EH) (z) )

(U) = unity matrix

is solved numerically with routines of the well-known

EISPACK package [41]. The original form of (A) (a typi-

cal structure is illustrated in Fig. 2(b)) is rearranged in the

numerically more convenient form of a banded matrix

(Fig. 2(c)). The matrix (A) is real, but not symmetric, and

the eigenvalue solutions of (7) may include conjugate

complex solutions. For appropriate wave-guiding struc-

tures, complex solutions are propagation factors of com-

plex waves, e.g., [26], [43] -[45]. The matrix eigensystem (7)

solution by the EISPACK package utilizes the QR-proce-

dure [41], i.e., the decomposition into a product of a

unitary matrix Q and the upper right triangular matrix R.
The eigenvalues and eigenvectors are found by an iterative

process [41], including the complex solutions.

Instead of introducing the boundary conditions given by

(3), equivalently satisfactory sets of conditions are possible

HX: H,l = H,d, H,z = H,3, Ezl = EZ4,

E=2= E,3, E,3 = E,4

Hy: Hzl = HZ2, HZ3= H,d, EZ1= EZ2,

EZ3= EZ4, EZ2= EZ3. (8)

The third possibility, a mixture of (3) and (8), i.e.

HX: Hzl = H,4, HZ2 = HZ3 , E=, = E24,

EZ2= EZ3, EZ3= E=4

Hy: E,l = E,4; EZ2= E,3, Hzl = H,d,

HZ2 = H,3, H,l = H,2 [9a]

or

HX: E,l = Ezz, EZ3= E,d, H,l = H=2,

HZ3 = H24, H=l = H:d

Hy: H,l = H,2, HZ3 = HZ4, Ezl = EZ2,

EZ3 = E,4, EZ2 = EZ3 (9b]

has also been investigated. The boundary conditions given

by (8) and (9) lead to expressions similar to those of (4)

and (5). The convergence behavior for these three equiv-

alent, but for the numerical treatment somewhat different,

cases is illustrated in Fig. 3 in the example of the shielded

dielectric image line [26] for the first and the fourth mode.

The finite-difference results of the boundary condition sets

based on (3) (curve 1), the sets based on (8) (curve 2), and

the mixture of the two based on (9a) (curve 3) are plotted

against the number N of node points in the x and y

direction of a uniform mesh. Equation (9b) leads to nearly

identical results with (9a) (curve 3) and therefore is not

shown. The results are compared with the mode-matching

method [26] for a variable number of higher order modes

M = N/2 considered in the mode-matching process. Goocl

agreement may be stated for N = 20; the relative errors AF

correspond to the mode-matching solution for M = 10.
Further, nearly identical convergence behavior for the



1108 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vOL. MTT-34, NO.11> NOVEMBER 1986

1. MODE(EH1l)
205

I
I-f
F.

, [261
‘ . __ /: ____________

2+04

C,

t

2.
FD

3.

4 8 12 16 20

(a)
N-

IAFI=

0.020/0

t k-
4 MOIJE (EH2,)

o

0.92.

IAFI=

0.180/0
\ \

0.03470

0.91*
4 8 12 16 20

N--
(b)

Fig. 3. Convergence behavior of the normalized phase constant /3/k0
(k. = free-space wavenumber) versus the number N of node points m x
and y direction, respectively. Finite-difference solution for three differ-
ent sets of boundary conditions (1,2,3), where 1 corresponds to equa-
tions (3) and is utilized in this paper. -------- solution of the mode-
matching technique of [26] where M = N/2 higher order modes are
considered. (a) Fundamental mode. (b) Fourth mode.

three boundary sets (curves 1,2, 3) may be perceived con-

cerning the fundamental mode (Fig. 3(a)). The same is true

for most higher order modes. For some particular modes,

however, e.g., the EHZ1 mode, curve 1 (i.e., the boundary

conditions of (3)) provides the best convergence; these

equations are therefore utilized in this paper.

III. RESULTS

As stated above, the finite-difference formulation- in

terms of the transverse components HX and H, given in

(1)-(7) circumvents the spurious-mode problem, in con-

trast to the formulation in terms of the longitudinal com-

ponents E: and Hz. This is demonstrated by Figs. 4 and 5

in the examples of the channel guide (Fig. 4(a) and (b))

and the dielectric waveguide (Fig. 5(a) and (b)). Figs. 4(b)

and 5(b), respectively, correspond to the E=, Hz formula-

tion. Consequently, spurious modes occur, whereas the

results of the HX, Hy formulation (Figs. 4(a) and 5(a)) are

free from spurious modes. For the structures under consid-

eration, the mode designations prevailing in the literature

have been chosen throughout this paper, i.e., for Figs. 4

and 5 those of [29], [2], and [11].

Good agreement between our results and those of

Marcatili [2] may be observed in Fig. 4(a) for the channel

guide. This is especially true for higher frequencies, where

the approximations of [2] are considered to be more accu-

rate since the field is concentrated increasingly in the

regions taken into account in the mode-matching proce-

dure of [2]. To facilitate the comparison, the normaliza-

tions B and VI [2] for the propagation constant and the

frequency, respectively, are used. Concerning the higher

order modes, only moderate agreement with [29] is ob-

tained, but like there, an additional H~l mode may be

perceived.

In Fig. 5(a), for the square dielectric waveguide, good

agreement between Marcatili’s results [2] and our results

may be stated, whereas Schweig’s results [33], with the

exception of the fundamental mode, deviate considerably,

especially concerning his “degenerate” modes. The two
additionally observed modes between E<’, E~l and Eil ,’E{2

are designated with E&, E;l, according to Goell [11]. The

comparison with the phase constants of Goell [11] (Fig.

5(c)) shows good agreement. The same is true for a com-

parison with the available electric wall symmetric results

by the mode-matching technique of [23] (Fig. 5(d)). Our

calculation of the E,, H= formulation for the square dielec-

tric waveguide of high permittivity, Fig. 5(b), indicates that

the spurious solutions are found to exist mostly in the

range 0.5< B <1.0, as has already been stated in [33] for

lower permittivity values. In Fig. 5, the normalized

frequency V2 according to [33] is used. The dispersion

curve of the E/l mode crosses those of the E/l, Ef2 modes

(Fig. 5(c)), corresponding to Goell [11]; this effect is

increased for higher permittivity values (Fig. 5(a)). The Efl
mode has not been calculated in [2] and [23].

Many examples analyzed by the exact mode-matching

technique of [23], [25], and [26] are available for the

dielectric image line for many frequency and permittivity

ranges. A verification of the finite-difference method by

comparison with the previous results for this structure

(Fig. 6) is particularly indicated, therefore.

The normalized phase constants fl/kO (kO = free-space

wavenumber) versus normalized frequency V~ for a

shielded dielectric image line (Fig. 6(a)) agree increasingly

well with the related lateral open structure of [23] if the

shield dimensions are chosen to be sufficiently large: curve

1 (d= 2h, a = 2w), curve 2 (d= 4.8h, a = 4.8w), curve 3

(d= 4.8h, a =10 w). Deviations are expected near the
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Fig. 4. Channel guide. Normalized propagation constant B versus normalized frequency VI. (a) Finite-difference
formulation in terms of Hx, Hy. (b) Finite-difference formulation in terms of Hz, E, (own calculations).

cutoff frequency of the fundamental Elill mode because

of the influence of the shield, whereas the real open

structure [23] exhibits no low-frequency cutoff. The modes

are designated according to [23].

Fig. 6(b) shows the propagation constant y = j~ (or a
below cutoff) normalized with k. of a dielectric image line

shielded with a conventional rectangular Ku-band wave-

guide housing (15.8 mm X 7.9 mm). Included is the non-

propagating mode range below the corresponding cutoff
frequencies. For simplicity, the corresponding real a val-

ues are plotted in the same diagram as in [42], but, for

lucidity, in the opposite direction. Between about 13.8 and

16.2 GHz, the eigenvalue solution leads to a complex

propagation constant yCW= + a~~ * j~.w, in spite of the

assumption that the shielded image line is lossless. This

apparent contradiction is already explained in [26] by

complex waves [43], [44], which indicate power transmis-

sion with opposite signs: in the forward z direction inside

the dielectric region, in the backward direction outside, or

vice versa [45]. The affinity to leakage effects stated in

[16] -[18] is obvious.
Fig. 6(c), where the normalized propagation constants

are plotted against the perrrtittivity c., allows the modes to

be assigned directly to rectangular waveguide modes

(c, =1) at finite frequencies (e.g., 14 GHz). A comparison

between the finite-difference results and those obtained by

the mode-matching method [26] shows good agreement, as

indicated in Fig. 6(b) and (c).
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Fig. 5. Dielectric waveguide. Normalized propagation constant B versus normalized frequency V2, with k. the free-space
wavenumber. (a) c1= 13.1c0; comparison with Marcatili [2] and Schweig and Bridges [33], (b) Finite-difference formulation
in terms of Hz, E=; .sl = 13.1(0 (own calculations). (c) c1= 2.25<.; comparison with Goell [11]. (d) Cl = 126.; comparison
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Fig. 7 presents normalized propagation constants versus

the normalized frequency McO (h = rib height, ,kO= free-

space wavenumber) of the ridge guide. The comparison

with mode-matching results of [27] shows excellent agree-

ment; this has also been stated for the coupled ridged

guide.

For the insulated image guide (Fig. 8), the results of the

finite-difference method agree well with the related mode-

matching valuesl of [46]. For the inverted strip guide (Fig.

9), excellent agreement with the mode-matching results of

[46] is obtained.

Since no spurious modes occur, the finite-difference

analysis described here is particularly appropriate for more

1Note that Fig. 5(a) and (b) in [46] should obviously be interchanged.

complicated waveguides, such as the strip-slab guide (Fig.

lo).

IV. CONCLUSIONS

A finite-difference analysis for a class of rectangular

dielectric waveguide structures is presented which is for-

mulated directly in terms of the simple wave equation for

the transverse components of the magnetic fields. This

leads to an eigenvalue problem which is free from the

troublesome problem of spurious modes. A graded mesh

permits the optimum use of the available computer capa-

bilities. The analysis allows the investigation of hybrid-

mode conversion effects, such as complex waves, at fre-

quencies where the modes are not yet completely bound to

the core of the highest permittivity, as well as at frequen-
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ties below cutoff. The calculated dispersion curves com-

pare well with results available from other methods.
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