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Finite-Difference Analysis of Rectangular
Dielectric Waveguide Structures

KARLHEINZ BIERWIRTH, NORBERT SCHULZ, aND FRITZ ARNDT, SENIOR MEMBER, IEEE

Abstract — A class of dielectric waveguide structures using a rectangular
dielectric strip in conjunction with one or more layered dielectrics is
analyzed with a finite-difference method formulated directly in terms of
the wave equation for the transverse components of the magnetic field.
This leads to an eigenvalue problem where the nonphysical, spurious
modes do not appear. Moreover, the analysis includes hybrid-mode conver-
sion effects, such as complex waves, at frequencies where the modes are
not yet completely bound to the core of the highest dielectric constant, as
well as at frequencies below cutoff. Dispersion characteristic examples are
calculated for structures suitable for millimeter-wave and optical integrated
circuits, such as dielectric image lines, shielded dielectric waveguides,
insulated image guides, ridge guides, and inverted strip, channel, strip-slab,
and indiffused inverted ridge guides. The numerical examples are verified
by results available from other methods.

I. INTRODUCTION

IELECTRIC WAVEGUIDE structures of the class

shown in Fig. 1(a) have found increasing interest for
integrated circuit applications in the millimeter-wave and
optical frequency range [1]-{21]. As this class includes a
wide variety of specially shaped dielectric waveguides (Fig.
1(b)—(k)), in the design of integrated circuits utilizing such
structures, it is important to find a reliable computer
analysis which is sufficiently general and flexible to allow
dominant- and higher order mode solutions of all desired
cases and which avoids the troublesome problem of non-
physical or “spurious” modes [28]-[33], [38].

Various methods of analyzing one or several of the
structures in Fig. 1(b)-(k) have been the subject of many
papers, e.g. [1]-[33], including, in particular, different kinds
of mode-matching techniques [2]-[13], [16], [17], [22]-[27]
and the finite-element method [15], [28]-[32]. Although the
finite-difference method is a common technique for the
solution of boundary value problems [33]-[37], it has only
been recently [33] that this method has been applied to one
of the structures of Fig. 1, the dielectric waveguide (Fig.
1(d)). The variational formulation in [33], however, brings
this method close to a finite-element technique [38], and
since an £,—H, formulation is utilized, spurious modes
occur [33].

Following [37], [38] in judging the appropriateness of a
method to solve a dielectric waveguide problem with a
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Fig. 1. Layered dielectric waveguide structures for integrated circuits in
the millimeter-wave and optical frequency range. (a) General structure.
(b) Nonradiative dielectric waveguide (cf. [20]). (¢) Dielectric image line
([1D. (d) Dielectric waveguide ([22]). (e) Strip dielectric guide (€, <€)
or insulated image gwide (€, >¢€) ([3). () Ridge guide ([16]).
(g) Inverted strip guide ({13)). (h) Channel or embedded strip guide ([2]).
(i) Strip-slab guide ([3]). (k) Indiffused inverted ridge guide ([17}).

particular cross-sectional shape, such as that shown in Fig.
1(a) one has to weigh the following criteria: flexibility to
deal with a large number of regions and with the hybrid-
mode nature of all interesting modes; accuracy and com-
putational efficiency; and the possibility of modifications
to eliminate unwanted nonphysical modes. Among the
candidates mentioned above, the finite-difference method
is considered to meet all these criteria very well.

This paper presents a simple, flexible, versatile finite-dif-
ference solution for analyzing the inhomogeneous wave-
guide structures of Fig. 1 which is free from the problem of
spurious modes. Instead of the vector potential formula-
tion of [39], which is solved by searching for the
dominant-mode propagation factor [39], a simpler direct
wave equation solution formulated in terms of the trans-
verse magnetic field components, H, and H,, is utilized
which leads advantageously to a conventional eigenvalue
problem [40]. A graded mesh permits the investigation of
structures with realistic dimensions by making the mesh
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finer in regions of particular interest; if necessary, the
enclosing box is sufficiently large so that it does not
perturb the modes perceptibly. Related coupled structures
are implicated by suitable electric or magnetic wall sym-
metry. Moreover, the finite-difference analysis given allows
the investigation of hybrid-mode conversion effects, such
as complex waves [26], [43]-[45], at frequencies where the
modes are not yet completely bound to the core of the
highest permittivity, as well as at frequencies below cutoff.
Numerical results compared with available data from other
methods verify the theory given.

II. THEORY

A finite cross section is defined by enclosing the guide in
a rectangular box (Fig. 1(a)) where the side walls may be
either electric or magnetic walls in order to include cou-
pled structures. An exponential decay factor may be intro-
duced to approximate the infinite exterior region for re-
lated “open” structures [28]. Since the finite-difference
analysis given includes mode investigations below cutoff,
which makes the decay factor modeling difficult to be
applied, it is preferred for these cases to make the box
large enough [33}, [36], [37] so that the influence on the
modes may be neglected. A graded mesh permits the
optimum use of the available computer capabilities for
these cases as well.

The wave equation describing the propagation in a
waveguide with inhomogeneous cross section can be ex-
pressed in terms of two field components, which are usu-
ally taken to be the longitudinal components E, and H,
[36], [37]). The formulation in terms of the transverse
components H, and H, is preferred, however, since it
circumvents the spurious-mode problem.

The Helmholtz equations in the homogeneous subre-
gions v =1,2,3,4 (Fig. 2(a)) are

VIH® +kIH =0
VAH” +kIH" =0

a2 a2
__..——+____
ax?  ady,

(1)

v2=

where [42]

k?=o’pe, +v2
- [JB
v={#

and a z dependence of exp(— yz) of the wave propagation
is understood. At the electric or magnetic walls, the
boundary conditions dH/dn=0 or H =0, respectively,
have to be satisfied (7 = unit vector normal to the walls).
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Fig. 2. Tlustration of the finite-difference method treatment. (a) Graded
mesh of the five-point representation. (b) Typical original structure of
the matrix (A4) in (6) and (7). (¢) Rearranged structure of (A4).

A graded mesh, of side lengths w, n, e, s (Fig. 2(a)), is
presumed drawn over the guide cross section. In the gen-
eral case, there are four subregions with four different
dielectric constants. Equations (1) may then be written in
its five-point finite-difference form [34], which in the case
of inhomogeneous cross sections leads to four coupled
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equations for each component H, or H,, respectively,
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0=—EHW—KHN+(K+£)HP—lwnk12HP+w?£ —n-aﬁ
w n noow 2 ay | ax |,
O=—iHW—E}—HS+(lV—+i)HP——l—wskﬁHP—wﬁl—q— —sa—H
w s s oow 2 dy |, dx|,
0=—iHE—fHS+(E+£)HP——eskaP—ei?—I—{— +SEE
e s s e 2 dy |, x5
0=—EHE—EHN+(£+E)HP——l—enkaPJrea—H +ni?E (2)
e n e n 2 dy . 0x |,

where H denotes H_ or H, respectively, and the designa-

and for H: E,=FE,,. E,=E, H,=H,, H,=H,;,

tions W, N, E, S, etc., are elucidated in Fig. 2(a). H,=H_,, ie.
Consideration is next given to the boundary conditions
for H: E,=E,, E;=E, Hy=H, H,y=H, H,= 1 9H, n 1 9H, 1 9H, 1 dH,
H,, ie. € dy €, dy |, € dx €4 Ox 4_
1 JH 1 dH 1 dH 1 0H
___ax +_8" +__ay _~8-V =0 1 0H, 1 dH, 1 dH, 1 dH,
& Iy |y 2 0¥, & OX | & 0X ], & dy |, & Iy, & ox €, Ox 2*
1 0H, 1 0H, 1 0H, 1 0H, 0 OH oH oOH oH
— [ - — — + — - = X x y Y| _
- + - =0
€& 0y |, € 0y |, € dx |, e dx |, ax |, x|, 9y | ay|,
dH, dH, . dH, dH, JdH, JH, 0H, 0H, 0
dx || dx |, dy |, Iy |, Ix |5 x|, dy|, dy|,
JdH, J0H, dH, dH, 0. (3b)
— + - =0.
JdH, _ dH, . oH, B 0H, _ ax |, dx |, ay |, ay |
dx | dx |, dy |, Iy,
These conditions are satisfactory to properly continue the
0H, 0H, dH, 0H, wave solution from one subregion to the next such that the
- t—= - =0 (3a) whole coupled solution governed by Maxwell’s equations
dx |, dx |, dy dy . ) y e
L 4 is obtained. Utilizing these conditions, the finite-difference
equations (2) result in
2 2 2 we, ee, 2 we, ee,
_——HXW + HxE + HxN + HxS
w(w+e) e(w+e) n(w+e)\se,+ne, ne;+se, s(w+e)\se+ne, nes+se,

€3 e n €, e s
+ ~+—)+———~(——+— H, .
ne;+se,\n e ne;+se \s S

2 € w oS €, w n
wte|setne,\s w se;+ne,\now
n+s We€, €€,
2 2
+ o H. p+vy°H,p
w+else +ne, ne;tse,
2 e, 2 ey—¢y, 2 €, € =
- v = -
7 Eowtel\se tne, neytse,) MV

w+e se;+ ne, W+ e ne; + e,

2 €4 €
- ( - )HVS=0
se€;+ney )

w+ e\ ne;,+5€q

(4)
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and
2 s€q ne, " 2 ne, S€y 2 2
+ Hpy+——H, ,+——H
w(n+s)\ee,+we; e +wey| "7 e(n+s)\ee,+we, ee;+wes) 7F n(n+s) N s(nts) 7S
2 € e n € e g €, w oS €4 w n
- —_— -t |t -t |+t — —+————(—+—) H,p
n+s|ee,+wein e ee,+wes\s e ee,+wes\s  w ee;+weg\n W
wte nej€, S€,€4
+ @’ H,p+y°H,p
ntslee +we, ee,+we,
2 €5 €, 2 € €,
+ - H\cW+ - HxE
n+sl\ee,+we, eet+wey) ntsl\ee+we, ee,twes
2 e, €, — €,
+ Xy HxS= 0. (5)

n-t+s ee +we, n+s ee,+we,

Equations (4) and (5) give H,p and H p, the magnetic
field components at the discrete node point P, in terms of
the immediately adjacent node points W, E, N, S (Fig.
2(a)). These equations are evaluated at each node point P
with appropriate modification to include the related
boundary conditions (electric or magnetic wall) of the
structure to be investigated (Fig. 1(a)). In this way, a set of
linear homogeneous equations is derived of the form

() B\ ((m))__ ()}
ey () |\(m)] " (m)]  ©

where (H) and (E) denote the submatrices given by the
coefficients in (4) and (5) related to H, or H,, respectively,
whereas (HE) and (EH) denote the coupled terms related
to H < H, and H, < H,, respectively. The resulting ei-
genvalue equation

((4)-MU)(X)=0 (7)
where
A=—7y2
(X)=(prsza"'QHypHyz"")T
_ [ (H) (HE)
(A)‘((EH) (E))

(U) = unity matrix

is solved numerically with routines of the well-known
EISPACK package [41]. The original form of (A4) (a typi-
cal structure is illustrated in Fig. 2(b)) is rearranged in the
numerically more convenient form of a banded matrix
(Fig. 2(c)). The matrix (A) is real, but not symmetric, and
the eigenvalue solutions of (7) may include conjugate
complex solutions. For appropriate wave-guiding struc-
tures, complex solutions are propagation factors of com-
plex waves, e.g., [26], [43]-[45]. The matrix eigensystem (7)
solution by the EISPACK package utilizes the QR-proce-
dure [41], ie., the decomposition into a product of a
unitary matrix Q and the upper right triangular matrix R.
The eigenvalues and eigenvectors are found by an iterative
process [41], including the complex solutions.

Instead of introducing the boundary conditions given by
(3), equivalently satisfactory sets of conditions are possible

Hx: Hzl = Hz4’ Hz2 = HzB’ Ez
E:2 = Ez3’ E23 = Ez4
Hy: Hzl = HzZ’ Hz3 = Hz4’ Ezl = EzZ’

E:3 = Ez4’ Ez2 = E.:3‘

1=E4,

(8)

The third possibility, a mixture of (3) and (8), i.e.

H:H,=H, H,=H,;, E,=E_,,
EzZ = Ez3’ E::3 = E::4

Hy: Ezl = Ez4; Ez2 = Ez3’ Hzl = Hz4’
HZZ = Hz3’ Hzl = HzZ (93_)

or

H: E,=E, E;=E, H,=H,,
H,=H, H,=H,

Hy: H:l = HzZ’ Hz3 = Hz4’ Ezl = E:Z’

Ez3 = Ez4’ EzZ = Ez3 (9b)
has also been investigated. The boundary conditions given
by (8) and (9) lead to expressions similar to those of (4)
and (5). The convergence behavior for these three equiv-
alent, but for the numerical treatment somewhat different,
cases is illustrated in Fig. 3 in the example of the shielded
dielectric image line [26] for the first and the fourth mode.
The finite-difference results of the boundary condition sets
based on (3) (curve 1), the sets based on (8) (curve 2), and
the mixture of the two based on (9a) (curve 3) are plotted
against the number N of node points in the x and y
direction of a uniform mesh. Equation (9b) leads to nearly
identical results with (9a) (curve 3) and therefore is not
shown. The results are compared with the mode-matching
method [26] for a variable number of higher order modes
M = N/2 considered in the mode-matching process. Good
agreement may be stated for N = 20; the relative errors AF
correspond to the mode-matching solution for M =10,
Further, nearly identical convergence behavior for the
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Fig. 3. Convergence behavior of the normalized phase constant 8/k,
(k¢ = free-space wavenumber) versus the number N of node points 1n x
and y direction, respectively. Finite-difference solution for three differ-
ent sets of boundary conditions (1,2,3), where 1 corresponds to equa-
tions (3) and is utilized in this paper. -------- solution of the mode-
matching technique of [26] where M = N/2 higher order modes are
considered. (a) Fundamental mode. (b) Fourth mode.

three boundary sets (curves 1,2,3) may be perceived con-
cerning the fundamental mode (Fig. 3(a)). The same is true
for most higher order modes. For some particular modes,
however, e.g., the EH,; mode, curve 1 (i.e., the boundary
conditions of (3)) provides the best convergence; these
equations are therefore utilized in this paper.

III. RESULTS

As stated above, the finite-difference formulation- in
terms of the transverse components H, and H, given in
(1)—~(7) circumvents the spurious-mode problem, in con-
trast to the formulation in terms of the longitudinal com-
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ponents E, and H,. This is demonstrated by Figs. 4 and 5
in the examples of the channel guide (Fig. 4(a) and (b))
and the dielectric waveguide (Fig. 5(a) and (b)). Figs. 4(b)
and 5(b), respectively, correspond to the E_, H. formula-
tion. Consequently, spurious modes occur, whereas the
results of the H,, H, formulation (Figs. 4(a) and 5(a)) are
free from spurious modes. For the structures under consid-
eration, the mode designations prevailing in the literature
have been chosen throughout this paper, i.e., for Figs. 4
and 5 those of [29], [2], and [11].

Good agreement between our results and those of
Marcatili [2] may be observed in Fig. 4(a) for the channel
guide. This is especially true for higher frequencies, where
the approximations of [2] are considered to be more accu-
rate since the field is concentrated increasingly in the
regions taken into account in the mode-matching proce-
dure of [2]. To facilitate the comparison, the normaliza-
tions B and ¥V, [2] for the propagation constant and the
frequency, respectively, are used. Concerning the higher
order modes, only moderate agreement with [29] is ob-
tained, but like there, an additional H}; mode may be
perceived.

In Fig. 5(a), for the square dielectric waveguide, good
agreement between Marcatili’s results [2] and our results
may be stated, whereas Schweig’s results [33], with the
exception of the fundamental mode, deviate considerably,
especially concerning his “degenerate” modes. The two
additionally observed modes between E|, E3; and E3;,'E{,
are designated with Ej5, E5j, according to Goell [11]. The
comparison with the phase constants of Goell [11] (Fig.
5(c)) shows good agreement. The same is true for a com-
parison with the available electric wall symmetric results
by the mode-matching technique of [23] (Fig. 5(d)). Our
calculation of the E,, H, formulation for the square dielec-
tric waveguide of high permittivity, Fig. 5(b), indicates that
the spurious solutions are found to exist mostly in the
range 0.5 < B <1.0, as has already been stated in [33] for
lower permittivity values. In Fig. 5, the normalized
frequency ¥V, according to [33] is used. The dispersion
curve of the E3] mode crosses those of the EJ;, E{% modes
(Fig. 5(c)), corresponding to Goell [11]; this effect is
increased for higher permittivity values (Fig. 5(a)). The E3
mode has not been calculated in [2] and [23].

Many examples analyzed by the exact mode-matching
technique of [23], [25], and [26] are available for the
diclectric image line for many frequency and permittivity
ranges. A verification of the finite-difference method by
comparison with the previous results for this structure
(Fig. 6) is particularly indicated, therefore.

The normalized phase constants 8/k, (k,= free-space
wavenumber) versus normalized frequency Vg for a
shielded dielectric image line (Fig. 6(a)) agree increasingly
well with the related lateral open structure of [23] if the
shield dimensions are chosen to be sufficiently large: curve
1(d=2h, a=2w), curve 2 (d =4.8h, a=4.8w), curve 3
(d=4.8h, a=10w). Deviations are expected near the
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Fig. 4. Channel guide. Normalized propagation constant B versus normalized frequency V;.

formulation in terms of H,, H,

cutoff frequency of the fundamental EH;, mode because
of the influence of the shield, whereas the real open
structure [23] exhibits no low-frequency cutoff. The modes
ate designated according to [23].

Fig. 6(b) shows the propagation constant y = jB (or a
below cutoff) normalized with k of a dielectric image line
shielded with a conventional rectangular Ku-band wave-
guide housing (15.8 mmX 7.9 mm). Included is the non-
propagating mode range below the corresponding cutoff
frequencies. For simplicity, the corresponding real a val-
ues are plotted in the same diagram as in [42], but, for
lucidity, in the opposite direction. Between about 13.8 and
16.2 GHz, the eigenvalue solution leads to a complex
propagation constant v, = + &, £ jB.,, in spite of the

(2) Finite-difference

. Fimte-difference formulation in terms of H,, E, (own calculations).

assumiption that the shielded image line is lossless. This
apparent contradiction is already explained in [26] by
complex waves [43], [44], which indicate power transmis-
sion with opposﬂe signs: in the forward z direction inside
the dielectric region, in the backward direction outside, or
vice versa [45]. The affinity to leakage effects stated in
[16]-[18] is obvious. ‘

Fig. 6(c), where the normalized propagation constants
are plotted against the permittivity e, allows the modes to
be assigned directly to rectangular waveguide modes
(e,=1) at finite frequencies (e.g., 14 GHz). A comparison
between the finite-difference results and those obtained by
the mode-matching method [26] shows good agreement, as
indicated in Fig. 6(b) and (c).
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Fig. 5. Dielectric waveguide. Normalized propagation constant B versus normalized frequency ¥, with k, the free-space
wavenumber. (a) €, =13.1¢,; comparison with Marcatili [2] and Schweig and Bridges [33). (b) Finite-difference formulation
in terms of H,, E,; ¢ =13.1¢, (own calculations). (¢) € = 2.25¢,; comparison with Goell [11}. (d) ¢ =12¢,; comparison
with Solbach and Wolff [23], and with Schweig and Bridges [33].

Fig. 7 presents normalized propagation constants versus
the normalized frequency hk, (% =rib height, k,= free-
space wavenumber) of the ridge guide. The comparison
with mode-matching results of [27] shows excellent agree-
ment; this has also been stated for the coupled ridged
guide.

For the insulated image guide (Fig. 8), the results of the
finite-difference method agree well with the related mode-
matching values® of [46]. For the inverted strip guide (Fig.
9), excellent agreement with the mode-matching results of
[46] is obtained.

Since no spurious modes occur, the finite-difference
analysis described here is particularly appropriate for more

1Note that Fig. 5(a) and (b) in [46] should obviously be interchanged.

complicated waveguides, such as the strip-slab guide (Fig.
10).

IV. CONCLUSIONS

A finite-difference analysis for a class of rectangular
dielectric waveguide structures is presented which is for-
mulated directly in terms of the simple wave equation for
the transverse components of the magnetic fields. This
leads to an eigenvalue problem which is free from the
troublesome problem of spurious modes. A graded mesh
permits the optimum use of the available computer capa-
bilities. The analysis allows the investigation of hybrid-
mode conversion effects, such as complex waves, at fre-
quencies where the modes are not yet completely bound to
the core of the highest permittivity, as well as at frequen-
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Fig. 8. Insulated image guide with structure according to [46]. Normal-

ized propagation constant versus normalized frequency.

cies below cutoff. The calculated dispersion curves com-
pare well with results available from other methods.
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